Exact Solutions of Compressible Flow Equations with Spherical Symmetry
نویسندگان
چکیده
In this paper, we construct spherically symmetric solutions of the equations of compressible flow, which are important in the theory of explosion waves in air, water, and other media. Following McVittie [1], we write a general solution form, in terms of velocity potential, as a product of a function of time and a function of a similarity variable. First, we find solutions to the equations of motion and continuity without reference to adiabatic or isentropic relation. These solutions are quite general and can be applied to nonadiabatic motions, such as the motions of interstellar gas clouds that lose energy by radiation. All the solutions found by McVittie [1] have linear velocity profile with respect to distance. We introduce a nonlinear form of the velocity function containing an arbitrary function of the similarity variable. Adiabatic conditions lead to a second-order ODE, which we discuss in some detail. We relate our work to the earlier investigations of Taylor [2], McVittie [1], and Keller [3].
منابع مشابه
Shock formation in the compressible Euler equations and related systems
We prove shock formation results for the compressible Euler equations and related systems of conservation laws in one space dimension, or three dimensions with spherical symmetry. We establish an L∞ bound for C solutions of the one-D Euler equations, and use this to improve recent shock formation results of the authors. We prove analogous shock formation results for one-D MHD with orthogonal ma...
متن کاملVanishing Viscosity Solutions of the Compressible Euler Equations with Spherical Symmetry and Large Initial Data
We are concerned with spherically symmetric solutions of the Euler equations for multidimensional compressible fluids, which are motivated by many important physical situations. Various evidences indicate that spherically symmetric solutions to the compressible Euler equations may blow up near the origin at certain time under some circumstance. The central feature is the strengthening of waves ...
متن کاملWeak Transversality and Partially Invariant Solutions
New exact solutions are obtained for several nonlinear physical equations, namely the Navier–Stokes and Euler systems, an isentropic compressible fluid system and a vector nonlinear Schrödinger equation. The solution methods make use of the symmetry group of the system in situations when the standard Lie method of symmetry reduction is not applicable.
متن کاملBlowup Phenomenon of Solutions for the IBVP of the Compressible Euler Equations in Spherical Symmetry
The blowup phenomenon of solutions is investigated for the initial-boundary value problem (IBVP) of the N-dimensional Euler equations with spherical symmetry. We first show that there are only trivial solutions when the velocity is of the form c(t)|x| (α-1) x + b(t)(x/|x|) for any value of α ≠ 1 or any positive integer N ≠ 1. Then, we show that blowup phenomenon occurs when α = N = 1 and [Formu...
متن کاملLie symmetry analysis for Kawahara-KdV equations
We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005